Adaptive Variational Mode Decomposition for Bearing Fault Detection

نویسندگان

چکیده

Rolling element bearings are commonly used in rotary mechanical and electrical equipment. According to investigation, more than half of rotating machinery defects related bearing faults. However, reliable fault detection still remains a challenging task, especially industrial applications. The objective this work is propose an adaptive variational mode decomposition (AVMD) technique for non-stationary signal analysis detection. AVMD includes several steps processing: 1) Signal characteristics analyzed determine the center frequency parameters. 2) ensemble-kurtosis index suggested decompose target select most representative intrinsic functions (IMFs). 3) envelope spectrum performed using selected IMFs identify characteristic features effectiveness proposed examined by experimental tests under different conditions, with comparison other techniques.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Underdetermined Blind Source Separation with Variational Mode Decomposition for Compound Roller Bearing Fault Signals

In the condition monitoring of roller bearings, the measured signals are often compounded due to the unknown multi-vibration sources and complex transfer paths. Moreover, the sensors are limited in particular locations and numbers. Thus, this is a problem of underdetermined blind source separation for the vibration sources estimation, which makes it difficult to extract fault features exactly b...

متن کامل

Improved Ensemble Empirical Mode Decomposition for Rolling Bearing Fault Diagnosis

Rolling bearing is an important part in mechanical system and faults occur frequently with vibration noise. Empirical mode decomposition (EMD) is a tool for nonlinear and non-stationary signals analysis. However, the major drawbacks of EMD are mode mixing problem, ensemble empirical mode decomposition (EEMD) provides a new tool for signal analysis, and it is an improved technique of EMD. In ord...

متن کامل

Bearing Fault Detection Using Acoustic Emission Signals Analyzed by Empirical Mode Decomposition

In condition monitoring of ball bearings, traditional techniques involving vibration, acceleration may not be able to detect a growing fault due to the low impact energy generated by the relative motion of the components. This study presents an experimental evaluation for incipient fault detection of lightly loaded ball bearings by using acoustic emission method. A table top bearing test rig is...

متن کامل

A Rolling Bearing Fault Diagnosis Method Based on Variational Mode Decomposition and an Improved Kernel Extreme Learning Machine

Rolling bearings are key components of rotary machines. To ensure early effective fault diagnosis for bearings, a new rolling bearing fault diagnosis method based on variational mode decomposition (VMD) and an improved kernel extreme learning machine (KELM) is proposed in this paper. A fault signal is decomposed via VMD to obtain the intrinsic mode function (IMF) components, and the approximate...

متن کامل

An Adaptive Variational Model for Image Decomposition

We propose a new model for image decomposition which separates an image into a cartoon, consisting only of geometric objects, and an oscillatory component, consisting of textures and noise. The model is given in a variational formulation with adaptive regularization norms for both the cartoon and texture part. The energy for the cartoon interpolates between total variation regularization and is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Signal and Information Processing

سال: 2023

ISSN: ['2159-4465', '2159-4481']

DOI: https://doi.org/10.4236/jsip.2023.142002